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The elements of Brayton technology development emphasize power conversion system
risk mitigation. Risk mitigation is achieved by demonstrating system integration
feasibility, subsystem/component life capability (particularly in the context of material
creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power
conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC
conversion system Technology Readiness Level (TRL) of six (6) was achieved during the
Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was
demonstrated for 10 kWe-class CBC components during the development of the Brayton
Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open
cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space
systems. Because of the baseline component and subsystem technology maturity, much
of the Brayton technology task is focused on issues related to systems integration. A
brief description of ongoing technology activities is given.
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Some Advanced Power Conversion Challenges

1. Multiple year operation
— High reliability components & systems
— Long life materials with conservative design margins
— Hermetic sealing to prevent fluid leakage
2. Generate power ~200X that of previous U.S. nuclear-fission space system
— High-power static-conversion designs
— Alternative dynamic-conversion approaches
3. Rapid and rigorous development
— Focused development programs
— High-TRL component technologies
4. Provide minimum mass designs
- High-temperature operation
— Alternative lightweight materials
~ System-level mass optimization SNAP-10A (USA, 1965)
5. Operate in severe environments
— Radiation-tolerant materials and components
— Micrometeoroid/Orbital Debris (MMOD) and Atomic Oxygen (AO) protection
6. Assure mutually compatible interfaces with reactor, heat rejection, and PMAD

— Effective inter-agency (NASA/DoE) & government/industry teaming
relationships

— Strong system engineering & integration
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R&T for Closed-Brayton-Cycle (CBC)
Power Conversion

 Current Power Conversion Subsystem R&T
effort is focused on risk-reduction activities

”////// /

 Focus Areas "
— Power Converter Subsystem =

— Power Conditioning & m | ==
Distribution Subsystem e L e

— Heat Rejection Subsystem
— Power Conversion System Materials
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+ 10 kW Brayton Rotating
Unit (BRU)

« 2 KW Mini-BRU

« 1.3 kW Brayton Isotope
Power System (BIPS)

Concepts

1970

+ 100 kW to MW Class NEP

Space Brayton History

» 25 kW Space Station
Freedom Solar Dynamic
(SD) Power Module

+ 20 kW SP-100 Design

1980

Glenn Research Center

¢ 2 KW SD Ground Test
Demonstration

0.5 to 6 kW Dynamic

Isotope Power System
(DIPS)

1990

» SD-Mir Flight Experiment

« 100 kW-Class NEP
Concepts

» 2 kW Brayton Testbed

« 55 watt Micro-Turbine

2000
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« Existing 2-kW Brayton Unit Available for
NEP Risk Reduction

pre—

— Alternator Test Rig (ATR)
» Tasks Completed

o

e Current Plans
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2-kWe Brayton Converter Unit

® 2 kW Brayton/ |
NEP Testbed

SD GTD Brayton Converter
Electrical Gas Heater
Commercial Chiller

Replaced SD Receiver w/Gas Heater

Designed & Assembled New (In-House) -
Electrical Controller / \

Completed Initial Checkout & Performance Mﬁ;’ﬂlsa?ﬁﬂ“m?‘ f ﬁgmﬂﬂsﬁﬁe

. ¢ lethods ransient omposite
Map.pmg (June 02) Thermal Response Characterize  Radiator
Designed & Assembled 1100 Vdc / Ton Thruster  Technology
Transformer-Based Controller for lon

Qemansimte Interactions
High Voltage

Thruster Demo 24 e
Distribution

lon Thruster (NSTAR) Demo

Mechanical Dynamic Modes Test (FY04)
Thermal Transient Modes Test (FY05)
Integrate & Test Advanced Radiator (FY06)
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Brayton NSTAR Test Layout
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Test Results

» Stable thruster
operation
demonstrated at all
test points

 Demonstrated high
AC-to-DC conversion
efficiency

« High-speed load
switching from ion
thruster to PLR during
thruster recycles
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Alternator Test Unit

Objective - Design, build, and test a high speed 25-100 kWe Closed Brayton
Cycle Alternator Test Unit to examine and characterize electrical performance
and interactions with the balance of an NEP electrical system.

» Phase 1 - Alternator Design Studies (6 mo.) Design Values
— Perform trade studies to evaluate alternator Parameter
design options over a range of potential operating
parameters (see table) Net Alternator 25, 50, 100
~ Develop an ATU conceptual design including Power, kWe

drive system and electrical controller

. Phase 2 - ATU Fabrication and Test (15 mo.) Line-to-Line 400, 4000

Voltage, Vrms

- Complete a detailed design and fabricate the

ATU, drive system, and controller Operating 30000, 60000
— Perform operational checkout of ATU at Speed, RPM
contractor facility
— Deliver ATU, drive system, and controller to Number of 2,4,6,8
NASA GRC for integration into High Power PMAD Magnetic Poles
Testbed
o Status

—~ Phase 1 contracts awarded (Hamilton-Sundstrand, Honeywell)
— Phase 1 concluding: trade study prelim results and concept designs
— Phase 2: detailed design Jan 05; hardware delivery Jan 06
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High Power PMAD

Objective — Design and develop a high power breadboard PMAD
system to support technology development and design activities
associated with the development of a generic NEP-Brayton
spacecraft system for deep-space applications

Note: not the Jupiter Icy Moons Orbiter (JIMO) Gov’'t PMAD design

oInitial Ca pability
— Built using readily available, off-the-shelf components
— Supports trade studies and technology development activities

*Final Co nfiguration
— Brassboard hardware; spacecraft-like architecture option
— PMAD design verification testbed
— Characterize electrical performance of ATU
—~ Representative PPU and Bus load accommodation
— ATU/ PPU / lon thruster end-to-end characterization tests

«Status
— Preliminary design complete (initial capability stage)
— Description document distributed
~ Initial configuration in fabrication
— Final configuration design ongoing
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High Power PMAD Initial Capability Configuration
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Turbomachinery

Advanced rotor/wheel conceptual design studies
— Task scheduled for FY05
— Advanced aero design configurations
— Advanced materials options (Si;N,, C-C)

Ceramic (Kyocera) gasifier turbine
in IR Powerworks machine
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Integrated wheel/shaft/bearing design, development & test
— Use existing DD&T capability at GRC
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» Testing

* Post-test Analyses

Material Selection

f—

Performance Characterization
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Bearing Technology

Low/Moderate Temp: Graphite, Moly Disulfide,
Teflon, Polyimides

High Temp: PS100 (NiCr-Glass), PS200 (NiCo-
Cr,0,), PS304 (NiCr/CrO, + Ag, BaF,/CaF,)
Application Processes: Sprays, Power
Metallurgy, Thin Films

NASA PS30

Friction & Wear Rigs (Pin on Disk, Pin on Plate)
Elevated Temperatures |
Controlled Atmospheres (e.g. HeXe)

Journal Test Rig

Wear Measurements
Optical Microscopy/Profilometry
Electron, X-ray Examination

Spindls speed, rpm (x 1000)
s B
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Start / Stop Torques
Bearing Preload
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Heat Exchangers

« Heat exchanger modeling
— In-house code upgrades completed
- Carbon-carbon recuperator study
— |ECEC 2004 Paper
« Hot side heat exchanger options
— Study ongoing; report Sept 04
« (as coolers
« University grant (Penn St/ARL)
— Advanced materials
— Constructal-formulation-based design
— Integral design/CFD analysis capability
« Upgraded GRC HX test facility
— Ambient & thermal-vac test capability
— Mods ongoing; July 05 completion
« DoD technology leveraging o
— SBIR with Alicomp; C-C plate-fin HXs |

Glenn Research Center

at Lewis Field



Radiator Demonstration Unit

Objective - Design, build, and test a radiator using advanced materials and heat spreading
technology to characterize and demonstrate heat rejection performance over a range of
temperatures applicable to dynamic power conversion options.

« Phase | - RDU Design Trade (6 mo.)

Two six-month RDU contracts awarded to
conduct trade studies evaluating advanced
radiator designs and develop a conceptual
design

- Advanced Cooling Technologies

» Lockheed Martin Space Systems Company
Design Reviews: Apr/Jun ‘04
Trade Studies Complete: Jun/Aug ‘04

High Temperature (500/550 K) water heat pipe
life tests underway at ACT.

« Phase 2 - RDU Fabrication and Test (16 mo.)

Validate manufacturing and design approach through
development and test of RDU

Deliver RDU to NASA GRC for stand-alone and integrated

thermal vacuum tests with 2kWe CBC test-bed
Design Reviews: Jan ‘05

Final Design Reports: Oct ‘05

Thermal/Vacuum Tests at GRC Tank 6 : Feb ‘06

Glenn Research Center

Design Values

Parameter
Heat Load, kWit 200, 400, 800
Radiator Outlet 300, 350, 400
Temperature, K
Radiator
Fluid AT, K 100, 150
Sink 200

Temperature, K

at Lewis Field
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Carbon-Carbon Composites

% b
Carbon-Carbon provides low density, high : ol
conductivity, high strength material for g )R P
various uses: 1 |} s
— Radiator Panels §§
~ Heat Exchangers g
~  Structures and Armoring i
GRC Addressing Two Key Areas for .
Carbon-Carbon Implementation ¢ J—— M
— C-C to Metallic Brazing and CTE Mismatch ¢ oy N oo me 66
Resolution (req'd for fluid system integration) PIBD KD KNG

— C-C Manufacturing Processes Using Melt
Infiltration and Fiber Reinforcement

Expected Deliverables
— C-C Manufacturing Survey
— Experimental Brazing Trials & Evaluation
— C-C Materials with Tailored Properties
— Transfer of Brazing and Assembly
Technology to Vendors
Leverage Current Aero Programs
— Affordable Fiber Reinforced Ceramic

Ceramic Composites with
Silicon Melt Infiltration

Composites (AFReCC) Ceramic Joining
~ Affordable, Robust Ceramic Joining Examples
Technology (ARCJoinT)

17
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Creep Testing

« Conduct Broad Test Series of Potential
Materials in Air Creep Rigs
— Cast Superalloys (e.g. MAR-M247)
— Worought Superalloys (e.g. LSHR Alloy)
— Alternatives (e.g. TiAl, Silicon Nitride)

- Selected Testing in new State-of-the Art
Inert Gas Test Rigs
- 273 To 1300 K
-~ 200 kg To 4,500 kg

— Dual Strain Transducers with >100
Microstrain Resolution

~ Scheduled for FY04 Operation

- Extrapolation Of Creep Data

~ Test Candidate Materials Over a Wide
Range of Temperatures and Stresses

— Utilize Larson-Miller Parameter to
Extrapolate Creep Data to Potential
Mission Durations
» Possible Testing of Bi-metallic Joints
and Irradiated Material Samples

Glenn Research Center
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Refractory Metal Interface

Two Primary Concerns:
— Contaminant Transport from Superalloy to Refractory via HeXe Working Fluid
— Superalloy-to-Refractory Joints

Contaminant Transport (e.g. O, N, C) Addressed through Superalloy Processing
— Formation of Alumina on Surface Provides Protection Against Constituent Transport
— Analysis Shows Partial Pressures of O, (1038 torr) below Nb-1Zr Threshold (10 torr)
— Experimental Verification in Work

Electron Beam (EB) Welding ldentified as Joining Approach
— Solid-Solution Strengthened Hastelloy X + Nb-1Zr Initial Candidates
— Others to be considered (e.g., INCO 617 + Nb-1Zr)

Critical Process Elements include:

— Long-term Stability And Deleterious Phase Formation
—  Working Fluid Exposure
— Post-Weld Heat Treatment and Mechanical Properties

Glenn Research Center
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Technology Summary

Brayton Technoloqgy Efforts are Addressing Risk Areas

 Historical space system development and contemporary
terrestrial systems inform current Brayton technology
efforts

» 2-kWe test bed provides valuable tool for assessing power
control, distribution and overall system integration issues

 Alternator Test Unit and Radiator Demonstration Unit
address critical component technologies

» Turbomachinery, Bearing, and Heat Exchanger tasks
complement potential industry development activities

» Materials Research will guide conversion system design,
manufacturing, assembly, and life validation
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